
Bioluminescence, Epi-Fluorescence & Trans-Fluorescence Imaging System

Highest Sensitivity

One order of magnitude (10x) less noise than any other camera on the market (Nüvü Camēras).

Customizable Options

Select any excitation / emission filters.

3D Visualization

Trans-fluorescence enables depth reconstruction with far red and near infrared dyes.

Increased
PerformancePrice Ratio

Get more functionalities at a lower price.

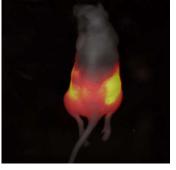
442-3333 Ch Queen-Mary, Montreal (QC), H3V 1A2, Canada Sales: +1 (438) 448-8840 info@labeotech.com www.labeotech.com

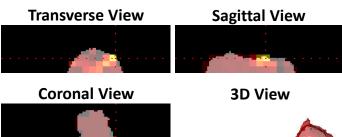
Multimodality Imaging

Bioluminescence

High sensitivity EMCCD* sensor allows the best bioluminescence light collection.

Epi-Fluorescence


 Uniform illumination from filtered white light.


Trans-Fluorescence

- •2 laser diodes (660 nm & 780 nm) for far red and near infrared dyes.
- •Laser scanning over the whole mice body or a selected region of interest.
- •3D visualization.

Image up to 3 mice simultaneously

Trans-Fluorescence Example Application

*EMCCD: Electron Multiplying Charge-Coupled Device

Turnkey System Includes

Camera

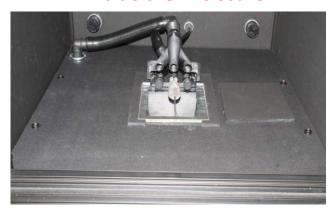
- •HNü EMCCD from Nüvü Camēras.
- •One order of magnitude (10x) less noise than any other camera on the market.
- •Resolution: 512 x 512 pixels.
- •Field of view: 10 cm X 10 cm.
- •EM gain range: 1 to 5000.
- •Single photon detection probability: 91%.
- •Cooling down to -85°C.

Excitation/Emission Filter Sets

- •4 filter sets included.
- •Can handle up to 20 filter sets.

Computer

 Acquisition and analysis computer and software.


Anesthesia

- •Anesthesia gas distribution for up to 3 mice.
- •Induction chamber.

Hot Air Warming

•Hot air ventilation at 37°C.

Inside the Enclosure

442-3333 Ch Queen-Mary, Montreal (QC), H3V 1A2, Canada Sales: +1 (438) 448-8840 info@labeotech.com www.labeotech.com